1,737 research outputs found

    U.S. Coast Guard Boat Recovery Simulation at NASA Ames Vertical Motion Simulator

    Get PDF
    The Boat Recovery Simulation was a collaboration between the U.S. Coast Guard and NASA. The experiment was conducted at the NASA Ames Vertical Motion Simulator (VMS). The goals were to (1) design a VMS experiment that can accurately simulate the motion of high sea conditions and to (2) collect data for the U.S. Coast Guard on human performance related to small boat recovery operations. The experiment setup included a software operation model designed around empirical boat position data; a replica boat section manufactured to incorporate real-world task elements; and the means to collect objective and subjective data from human participants. The VMS provided a viable testbed to assess certified U.S. Coast Guard crewmembers task performance while in motion

    Control Force Compensation in Ground-Based Flight Simulators

    Get PDF
    This paper presents the results of a study that investigated if controller force compensations accounting for the inertial force and moment due to the aircraft motion during flight have a significant effect on pilot control behavior and performance. Seven rotorcraft pilots performed a side-step and precision hovering task in light turbulence in the Vertical Motion Simulator. The effects of force compensation were examined for two different simulated rotorcraft: linear and UH-60 dynamics with two different force gradient of the lateral stick control. Four motion configurations were used: large motion, hexapod motion, fixed-base motion, and fixed-base motion with compensation. Control-input variables and task performance such as the time to translate to the designated hover position, station-keeping position errors, and handling qualities ratings were used as measures. Control force compensation enabled pilot control behavior and performance more similar to that under high- or medium-fidelity motion to some extent only. Control force compensation did not improve overall task performance considering both rotorcraft models at the same time. The control force compensation had effects on the linear model with lighter force gradient, but only a minimal effect on pilots? control behavior and task performance for the UH-60 model, which had a higher force gradient. This suggests that the control force compensation has limited benefits for controllers that have higher stiffness

    Moving base simulation of an integrated flight and propulsion control system for an ejector-augmentor STOVL aircraft in hover

    Get PDF
    A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted

    Objective Motion Cueing Criteria for Commercial Transport Simulators

    Get PDF
    This paper adds data to establish fidelity criteria for the simulator motion system diagnostic test now required during commercial aircraft simulator approval in the United States. Nineteen airline transport pilots flew three tasks under six different motion conditions in an experiment on the NASA Vertical Motion Simulator. The motion conditions allowed refinement of the initial fidelity criteria developed in previous experiments. In line with these previous experiments, the motion condition significantly affected (1) false motion cue pilot ratings, and sink rate and longitudinal deviation at touchdown in the approach and landing task, (2) false motion cue pilot ratings, roll deviations, and maximum pitch rate in the stall task, and (3) false motion cue pilot ratings, heading deviation, and pedal reaction time after an engine failure in the take-off task. Combining data from three experiments, significant differences in pilot-vehicle performance were used to define objective motion cueing criteria boundaries. These fidelity boundaries suggest that some hexapod simulators can possibly produce motion cues with improved fidelity in several degrees of freedom

    Refinement of Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

    Get PDF
    The objective of this paper is to refine objective motion cueing criteria for commercial transport simulators based on pilots' performance in three flying tasks. Actuator hardware and software algorithms determine motion cues. Today, during a simulator qualification, engineers objectively evaluate only the hardware. Pilot inspectors subjectively assess the overall motion cueing system (i.e., hardware plus software); however, it is acknowledged that pinpointing any deficiencies that might arise to either hardware or software is challenging. ICAO 9625 has an Objective Motion Cueing Test (OMCT), which is now a required test in the FAA's part 60 regulations for new devices, evaluating the software and hardware together; however, it lacks accompanying fidelity criteria. Hosman has documented OMCT results for a statistical sample of eight simulators which is useful, but having validated criteria would be an improvement. In a previous experiment, we developed initial objective motion cueing criteria that this paper is trying to refine. Sinacori suggested simple criteria which are in reasonable agreement with much of the literature. These criteria often necessitate motion displacements greater than most training simulators can provide. While some of the previous work has used transport aircraft in their studies, the majority used fighter aircraft or helicopters. Those that used transport aircraft considered degraded flight characteristics. As a result, earlier criteria lean more towards being sufficient, rather than necessary, criteria for typical transport aircraft training applications. Considering the prevalence of 60-inch, six-legged hexapod training simulators, a relevant question is "what are the necessary criteria that can be used with the ICAO 9625 diagnostic?" This study adds to the literature as follows. First, it examines well-behaved transport aircraft characteristics, but in three challenging tasks. The tasks are equivalent to the ones used in our previous experiment, allowing us to directly compare the results and add to the previous data. Second, it uses the Vertical Motion Simulator (VMS), the world's largest vertical displacement simulator. This allows inclusion of relatively large motion conditions, much larger than a typical training simulator can provide. Six new motion configurations were used that explore the motion responses between the initial objective motion cueing boundaries found in a previous experiment and what current hexapod simulators typically provide. Finally, a sufficiently large pilot pool added statistical reliability to the results

    An Integrated Gate Turnaround Management Concept Leveraging Big Data Analytics for NAS Performance Improvements

    Get PDF
    "Gate Turnaround" plays a key role in the National Air Space (NAS) gate-to-gate performance by receiving aircraft when they reach their destination airport, and delivering aircraft into the NAS upon departing from the gate and subsequent takeoff. The time spent at the gate in meeting the planned departure time is influenced by many factors and often with considerable uncertainties. Uncertainties such as weather, early or late arrivals, disembarking and boarding passengers, unloading/reloading cargo, aircraft logistics/maintenance services and ground handling, traffic in ramp and movement areas for taxi-in and taxi-out, and departure queue management for takeoff are likely encountered on the daily basis. The Integrated Gate Turnaround Management (IGTM) concept is leveraging relevant historical data to support optimization of the gate operations, which include arrival, at the gate, departure based on constraints (e.g., available gates at the arrival, ground crew and equipment for the gate turnaround, and over capacity demand upon departure), and collaborative decision-making. The IGTM concept provides effective information services and decision tools to the stakeholders, such as airline dispatchers, gate agents, airport operators, ramp controllers, and air traffic control (ATC) traffic managers and ground controllers to mitigate uncertainties arising from both nominal and off-nominal airport gate operations. IGTM will provide NAS stakeholders customized decision making tools through a User Interface (UI) by leveraging historical data (Big Data), net-enabled Air Traffic Management (ATM) live data, and analytics according to dependencies among NAS parameters for the stakeholders to manage and optimize the NAS performance in the gate turnaround domain. The application will give stakeholders predictable results based on the past and current NAS performance according to selected decision trees through the UI. The predictable results are generated based on analysis of the unique airport attributes (e.g., runway, taxiway, terminal, and gate configurations and tenants), and combined statistics from past data and live data based on a specific set of ATM concept-of-operations (ConOps) and operational parameters via systems analysis using an analytic network learning model. The IGTM tool will then bound the uncertainties that arise from nominal and off-nominal operational conditions with direct assessment of the gate turnaround status and the impact of a certain operational decision on the NAS performance, and provide a set of recommended actions to optimize the NAS performance by allowing stakeholders to take mitigation actions to reduce uncertainty and time deviation of planned operational events. An IGTM prototype was developed at NASA Ames Simulation Laboratories (SimLabs) to demonstrate the benefits and applicability of the concept. A data network, using the System Wide Information Management (SWIM)-like messaging application using the ActiveMQ message service, was connected to the simulated data warehouse, scheduled flight plans, a fast-time airport simulator, and a graphic UI. A fast-time simulation was integrated with the data warehouse or Big Data/Analytics (BAI), scheduled flight plans from Aeronautical Operational Control AOC, IGTM Controller, and a UI via a SWIM-like data messaging network using the ActiveMQ message service, illustrated in Figure 1, to demonstrate selected use-cases showing the benefits of the IGTM concept on the NAS performance

    Transfer of Training on the Vertical Motion Simulator

    Get PDF
    This paper describes a transfer-of-training study in the NASA Ames Vertical Motion Simulator (VMS). Sixty-one general aviation pilots, divided in four groups, trained on four challenging commercial transport tasks with four motion conditions: no motion, small hexapod, large hexapod, and VMS motion. Then, every pilot repeated the tasks with VMS motion to determine if training with different motion conditions had an effect. New objective motion criteria guided the selection of the motion parameters for the small and large hexapod conditions. Considering results that were statistically significant, or marginally, the motion condition used in training affected 1) longitudinal and lateral touchdown location; 2) the number of secondary stall warnings in a stall recovery; 3) pilot ratings of motion utility and maximum load factor obtained in an overbanked upset recovery; and 4) pilot ratings of motion utility and pedal input reaction time in the engine-out-on-takeoff task. Since the motion condition revealed statistical differences on objective measures in all the tasks, even with some in the direction not predicted, trainers should be cautious not to oversimplify the effects of platform motion. Evidence suggests that the new objective motion criteria may offer valid standardization benefits, as instances arose when the higher-fidelity hexapod motion, as predicted by the criteria, provided better cues in training than the lower-fidelity hexapod motion

    Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

    Get PDF
    This paper intends to help establish fidelity criteria to accompany the simulator motion system diagnostic test specified by the International Civil Aviation Organization. Twelve air- line transport pilots flew three tasks in the NASA Vertical Motion Simulator under four different motion conditions. The experiment used three different hexapod motion configurations, each with a different tradeoff between motion filter gain and break frequency, and one large motion configuration that utilized as much of the simulator's motion space as possible. The motion condition significantly affected: 1) pilot motion fidelity ratings, and sink rate and lateral deviation at touchdown for the approach and landing task, 2) pilot motion fidelity ratings, roll deviations, maximum pitch rate, and number of stick shaker activations in the stall task, and 3) heading deviation after an engine failure in the takeoff task. Significant differences in pilot-vehicle performance were used to define initial objective motion cueing criteria boundaries. These initial fidelity boundaries show promise but need refinement

    Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    Get PDF
    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects
    corecore